● 资讯

汤山镇新设备行星式ZPLE060-L2-16-S2-P2轴向伺服减速箱

发布:2024/5/5 6:02:25 来源:ymcdkj

S2-P2轴向伺服减速箱
扭矩系数:,其中d为高强螺栓公称直径(mm),M为施加扭矩值(N﹒M),P为螺栓预紧力。.9级高强度大六角螺栓连接必须保证扭矩系数K的平均值为.11~.15。其标准偏差应小于等于.1。摩擦系数:,其中F为抗滑移试验所测得的使试件产生初始滑移的力,nf为摩擦面数,为与F对应的高强螺栓拧紧预拉力实测值之和。初拧扭矩:为了缩小螺栓紧固过程中钢板变形的影响,可用二次拧紧来减小先后拧紧螺栓之间的相互影响。


行星减速机的齿轮按照形状主要有直齿轮,斜齿轮,伞齿轮,曲面齿轮几种。
一、斜齿轮
行星减速机齿轮的轮齿有一位角度或者是与其轴线旋转一定角度在平面齿轮机构中相互齿合,斜齿轮齿面相齿合于一条倾斜于轴承的直线上,齿合线的长度从0逐渐变化到再从变化到0,轮齿的加载和卸载变得均匀。人字齿轮相当于齿轮和右旋齿轮并在一起,因为轮齿存在一定的角度,斜齿轮产生相当大的轴间推力,人字齿轮通过相互抵消纠正了这一推力,允许其使用推力轴承代替不同推力轴承,通常是为了方面经常沿着齿轮一个中心槽。



通用减速器的选型包括提出原始条件、选择类型、确定规格等步骤。
相比之下,类型选择比较简单,而准确减速器的工况条件,掌握减速器的设计、和使用特点是通用减速器正确合理选择规格的关键。
规格选择要满足强度、热平衡、轴伸部位承受径向载荷等条件。

1.按机械功率或转矩选择规格(强度校核)
通用减速器和专用减速器设计选型方法的不同在于,前者适用于各个行业,但减速只能按一种特定的工况条件设计,故选用时用户需根据各自的要求考虑不同的修正系数,工厂应该按实际选用的电动机功率(不是减速器的额定功率)打铭牌;后者按用户的专用条件设计,该考虑的系数,设计时一般已作考虑,选用时只要满足使用功率小于等于减速器的额定功率即可,方法相对简单。
通用减速器的额定功率一般是按使用(工况)系数KA=1(电动机或汽轮机为原动机,工作机载荷平稳,每天工作3~10h,每小时启动次数≤5次,允许启动转矩为工作转矩的2倍),接触强度安全系数SH≈1、单对齿轮的失效概率≈1%,等条件计算确定的。

所选减速器的额定功率应满足
PC=P2KAKSKR≤PN
式中PC———计算功率(KW);
PN———减速器的额定功率(KW);
P2———工作机功率(KW);
KA———使用系数,考虑使用工况的影响;
KS———启动系数,考虑启动次数的影响;
KR———可靠度系数,考虑不同可靠度要求。



(3)空载状态下分析之后,仍然在此转子结构的永磁同步电机的定子绕组中分别通入正弦波与变频器电流源。分别得到两种激励源加载后的涡流损耗波形图。从中可以发现在通入正弦波时候涡流损耗稍微会比空载时候高一点,但不是太多。而在变频器供电时其损耗会比正弦波时高很多。由此可见发现由于变频器中含有较多的谐波,所以这些电流谐波导致气隙磁导分布不均,产生较大的波动,导致永磁体内磁场不稳定,发热严重,损耗就会增加。 (4)将转子磁路结构进行改变,由原来的内置式改为表贴式。表贴式的永磁体放置在转子表面,这样会使电感变小,时电流响应变快,因为在转子外侧,不会产生磁阻转矩,转矩会有好的形式。但是在电机高速旋转时,其也会相对于内置式更容易发热,不能及时得到散热,就会导致永磁体涡流急剧增加。分别对比与内置式的永磁电机,在空载和负载情况下,表贴式的永磁体涡流损耗都会远大于内置式的涡流损耗。所以在工程中两者如何选取要根据不同特点进行研究和使用,才能更好发挥其自身的优点。 (5) 将对比分析不同的极槽配合情况下,永磁体涡流损耗的不同。先是将电机是要电机使用4极14槽,而后改变其槽数,用的是4极18槽。在这两种情况下,分别对这种内置式永磁同步电机进行求取永磁体涡流损耗。由波形得到,18槽的电机分别在空载和负载的两种供电情况下其永磁体涡流损耗都会稍微大于24槽的电机模型。可见,槽数的改变,导致了槽口的大小发生变化,气隙磁导分布不均匀,空间谐波含量有所不同,从而 终导致转子内涡流损耗的不同。

+ -19FA19
-K3-19FA19 -K3-28HB22 V 3-19DC19
K3-19FB19
K3-19HB19
VRS-100 -14BJ14
-K3-14BJ14 -K3-28HF24 V 3-14HB16
K3-28FC24

网友评论:(注:网友评论仅供其表达个人看法,并不表明盛丰建材网。)

查看更多评论